
1. Parity, Divisibility, Multiples, and Divisors

In this chapter of the course notes we will explore introductory definitions in number
theory that we will find useful in our study of cryptography. We will begin as many
courses do with a mathematical definition of even and odd, properties called the parity
of a number.

Definition
1.0.1

Even and odd
A number n ∈ Z is said to be even if there exists k ∈ Z such that

n = 2k.

Similarly, a number n ∈ Z is said to be odd if there exists k ∈ Z such that

n = 2k + 1.

Which of the two categories an integer belongs to is called its parity.

When we learn the definition of divisibility, we will recognize that the mathemati-
cal definition of an even number above coincides with the mathematical definition of
"divisible by 2."

Example
1.0.1

Proving a quantity is even
In order to prove that a number n is even, we must show that it can be written

as twice some integer. The work to be done goes into finding that integer, which
may be written in terms of n or some other variables. To see an example of this,
we will solve the following problem:

Show that if n is an even integer, then n2 + 3n + 6 is also an even
integer.

In order to show this claim is true, we will start from what we are told: that
n is an even integer. By the definition of even, we know that n = 2k for some
unknown integer k. Substituting this into the expression n2 + 3n + 6 shows us
that

n2 + 3n + 6 = (2k)2 + 3(2k) + 6, (using n = 2k)

= 4k2 + 6k + 6,

= 2(2k2 + 3k + 3).
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We now observe the following: because k was an integer, 2k2 + 3k + 3 is also
an integer! We have now shown that n2 + 3n + 6 can be written as twice some
integer, and thus it is even. In summary, we first used the fact that we knew n
was even to rewrite it as a multiple of 2. Then we performed some algebra to
show that the final quantity is still also a multiple of two.

Luckily the format of a proof that a quantity is odd follows a similar structure. If you
can show a quantity is even, there is a good chance you can construct a similar proof
showing another is odd.

Example
1.0.2

Proving a quantity is odd
When showing that a quantity is odd our goal is to execute a similar process to

that as when we showed a quantity is even. However, we will hope to keep a
remainder of 1 outside our multiple of 2.

Show that if n is any integer, then (2n + 1)2 is always odd.

This problem is slightly different than the one before in that it asks us to show
that any integer n we use results in an odd number. We will prove this by
handling both cases. That is to say, we will write a proof where we suppose that
n is odd, and another where we suppose that n is even.
If n is even, then as before n = 2k for some integer k. Doing the same work as
before,

(2n + 1)2 = (2(2k) + 1)2,

= (4k + 1)2,

= 16k2 + 8k + 1,

= 2(8k2 + 4k) + 1.

Notice that we have written (2n + 1)2 as twice some integer plus a remainder of
1! We conclude that when n is even, the result is true.
Suppose instead that n is odd. Then n = 2k + 1 for some integer k. Let us try
similar algebra and see what happens.

(2n + 1)2 = (2(2k + 1) + 1)2,

= (4k + 3)2,

= 16k2 + 24k + 9,

= (16k2 + 24k + 8) + 1. (Borrowing 1 from 9.)

= 2(8k2 + 12k + 4) + 1.

Conclude that in either case, we still get an odd number!
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The idea of even and oddness is actually related quite closely to the idea of divisibility
and remainders.

Definition
1.0.2

Divisor, multiple, and divides
Given two integers a, b ̸= 0, we say that a divides b (alt. b is divisible by a) if

there exists a value k ∈ Z such that b = ka. If b is divisible by a, then we say that
b is a multiple of a, and a is a divisor of b. If a divides b, it is common to write a|b
as shorthand.

Example
1.0.3

Proving one quantity divides another
In order to show that one quantity divides another, we will use the same phi-

losophy as in showing a number was even. Our goal is to show or rewrite some
quantity as a multiple of the other using the information we are given. Often by
trying to factor out an integer from all terms.

Show that if 3|a, then 9|(a2 + 15a + 45).

As always, we start with what we are told: that 3 divides a. That implies there
is an integer k for which a = 3k. Substituting this into the expression shows us
that

a2 + 15a + 45 = (3k)2 + 15(3k) + 45,

= 9k2 + 45k + 45,

= 9(k2 + 5k + 5).

By showing that a2 + 15a + 45 can be written as a multiple of 9, we have shown
that 9|(a2 + 15a + 45).

With this idea, we may define the common and frequently used concept of a prime
number.

Definition
1.0.3

Prime and composite
An integer n ≥ 2 is called prime if it has no integer divisors other than 1 and

itself. In the event that an integer is not prime, it is called composite.

What is up with the naming convention here? Why are numbers that are not prime
called ’composite’? Why do we care about primes? We care about prime numbers
because in reality, all integers are ’built’ from primes. Composite numbers are named
so because they are composed of said primes. This result is known as the fundamental
theorem of arithmetic and is given below.

Theorem
1.0.1

Fundamental theorem of arithmetic
Every positive integer n ≥ 2 can be written as a unique product of primes.
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